首页 > 高考志愿 > 大学专业 >

arcsinx的导数的简单介绍(arcsinx的导数是什么,怎么求?)

大学专业 2024-01-14 19:00:08
arcsinx的导数1、arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函...更多知识由小编为你整理了《arcsinx的导数的简单介绍》详细内容,欢迎关注我们。

arcsinx的导数的简单介绍(arcsinx的导数是什么,怎么求?)


arcsinx的导数的简单介绍

arcsinx的导数

1、arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。

2、arcsinx的导数是1/√(1-x﹚,而arccosx=π/2-arcsinx,那么对arccosx求导,y=-1/√(1-x)。

3、arcsinx的导数1/√(1-x^2)。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。

4、arcsinx的导数1/√(1-x^2)。解答过程如下:此为隐函数求导,令y=arcsinx 通过转变可得:y=arcsinx,那么siny=x。两边进行求zhuan导:cosy × y=1。

5、y=arcsinx(-1x1)是x=siny的反函数,x=siny单调可导,且siny的导数为cosy0 dy/dx=1/cosy=1/根号下1-x^2 所以arcsinx的导数为1除根号下1-x^2 反三角函数中的反正弦。

arcsinx的导数是什么?

arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。

y=arcsinx(-1x1)是x=siny的反函数,x=siny单调可导,且siny的导数为cosy0 dy/dx=1/cosy=1/根号下1-x^2 所以arcsinx的导数为1除根号下1-x^2 反三角函数中的反正弦。

arcsinx的导数是1/√(1-x﹚,而arccosx=π/2-arcsinx,那么对arccosx求导,y=-1/√(1-x)。

arcsinx的导数1/√(1-x^2)。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。

arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x); arccosx的导数:-1/√(1-x) 扩展资料 arccosx的导数解答过程如下:(1)y=arccosx则cosy=x。

arcsinx的导数是什么,怎么求?

1、arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。

2、反三角函数求导公式 (arcsinx)=1/√(1-x)(arccosx)=-1/√(1-x)(arctanx)=1/(1 x)(arccotx)=-1/(1 x)反三角函数 反三角函数是一种基本初等函数。

3、arcsinx的导数为1/√(1-x^2)。解答过程如下:此为隐函数求导,令y=arcsinx 通过转变可得:y=arcsinx,那么siny=x。两边进行求导:cosy × y=1。即:y=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)。

4、arcsinx的导数1/√(1-x^2)。解答过程如下:此为隐函数求导,令y=arcsinx 通过转变可得:y=arcsinx,那么siny=x。两边进行求导:cosy × y=1。即:y=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)。

5、arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。推导过程:y=arcsinx,y=1/√(1-x),反函数的导数:y=arcsinx,那么,siny=x,求导得到cosy*y=1。

arcsinx的导数是什么

1、arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。

2、arcsinx的导数是1/√(1-x﹚,而arccosx=π/2-arcsinx,那么对arccosx求导,y=-1/√(1-x)。

3、y=arcsinx(-1x1)是x=siny的反函数,x=siny单调可导,且siny的导数为cosy0 dy/dx=1/cosy=1/根号下1-x^2 所以arcsinx的导数为1除根号下1-x^2 反三角函数中的反正弦。

4、arcsinX=x*arcsinX 根号(1-x平方) C ,C是一个任意常数。Sarcsinxdx。=xarcsins-Sxdarcsinx。=xarcsins-Sx/根号下(1-x^2)dx。=xarcsins 0.5S1/根号下(1-x^2)d(1-x^2)。

5、arcsinx的导数1/√(1-x^2)。解答过程如下:此为隐函数求导,令y=arcsinx 通过转变可得:y=arcsinx,那么siny=x。两边进行求zhuan导:cosy × y=1。

6、arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。推导过程:y=arcsinx,y=1/√(1-x),反函数的导数:y=arcsinx,那么,siny=x,求导得到cosy*y=1。

关于arcsinx的导数和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注高三网。


以上就是高考指导网整理的关于arcsinx的导数的简单介绍(arcsinx的导数是什么,怎么求?)的全部内容,让我们一起关注热搜。

标签: arcsinx的导数的简单介绍 arcsinx的导数是什么 怎么求 arcsinx的导数是什么

【免责声明】本站所有文章(含图片和视频)由网站用户自行上传发布,平台仅提供信息存储服务,并不代表本站立场和观点,若有侵犯你的权利,请及时联系我们删除。
Copyright © 2016-2020 shuguohai.com All Rights Reserved. 皖ICP备2022016496号